I I III III KING'S HEALTH PARTNERS DIABETES, ENDOCRINOLOGY, OBESITY

Pioneering better health for all

Endoscopic Duodenal Mucosal Resurfacing

Dr David Hopkins FRCP

Director, Institute of Diabetes, Endocrinology and Obesity

King's Health Partners, London, U.K.

Conflict of Interest Disclosure Dr. David Hopkins, FRCP

Employment: King's College Hospital NHS FT/ King's Health Partners

Paid Consultancy and speaking engagements:

- Advisory board work for Sanofi, Novo Nordisk, Roche
- Speaking engagements for Sanofi, Novo Nordisk, Eli Lilly AstraZeneca, Fractyl, Sunovion

Research Support to King's Health Partners: Novo Nordisk, Fractyl Unpaid – charitable sector work:

Chair of Council of Healthcare Professionals, Diabetes UK

Agenda

- Duodenal mucosal hyperplasia
- Duodenal Mucosal Resurfacing
- Clinical Effectiveness
- Safety and Tolerability
- Future Directions

Background

There is a broad and increasing evidence base that the duodenum has a key role in glucose homeostasis:

- Evidence from bariatric surgical procedures with profound improvements in insulin sensitivity and incretin secretion occurring early after surgery
- Evidence from animal studies showing improved glycaemia after duodenal exclusion
- Evidence from morphological studies demonstrating duodenal mucosal hyperplasia and changes in incretin secreting neuroendocrine cell populations in both animal models and in human studies of newly diagnosed diabetes.
- Evidence of changes in incretin secretion associated with morphological changes following high fat feeding in rodents

Animal models – diet induced obesity (DIO)

Mice fed a chow (lean) or high fat 'DIO' (diet induced obesity), 60% fat, 20% sugar) diet

Sacrificed at 7 weeks or 13 weeks

Endpoints: Serology, metabolic profile, stereology, RNAseq, liver steatosis assessment

Group mean body weight (g) +SEM during the study period. ***P<0.001 vs. Lean 7 weeks. ##P<0.01, ###P<0.001 vs. Lean 13 weeks. Two-way RM ANOVA, Bonferroni post hoc test.

Increased duodenal mucosal volume and liver weight in DIO mice

Mean total duodenal surface area +SEM estimated by stereology in mice following consumption of regular chow (lean) or high fat diet (DIO) for 7 or 13 weeks. *P<0.05 vs. Lean 13 weeks, unpaired t-test.

Measure, mean (SEM)	Lean- 13	DIO - 13	P- value
	WK	WK	
Liver weight**, g	0.96	1.4 (0.1)	<0.001
	(0.02)		
Duodenal weight**, mg	152 (3.4)	172 (5.9)	< 0.001
Duodenal mucosal	120 (2.4)	130 (3.7)	<0.05
volume [‡] , mm ³			
Duodenal surface area [‡] ,	44.0 (1.6)	61.6 (3.4)	< 0.001
cm ²			

Mean Total Whole Intestine Volume +SEM estimated by stereology in mice fed a Lean vs DIO after 13 weeks **p<0.01 vs. Lean 13 weeks, unpaired t-test

I I III III KING'S HEALTH PARTNERS DIABETES, ENDOCRINOLOGY, OBESITY

Ghosh, et al.. Poster, ADA Orlando, Florida, USA, June 2018.

Putative role of duodenal mucosal hyperplasia in metabolic disease

Can reversal of hyperplasia alone reverse/ameliorate insulin resistance?

Revita™ DMR Procedure

Minimally invasive, outpatient endoscopic procedure using a balloon catheter

- Procedural Steps
 - Targets duodenal mucosa between Ampulla of Vater and Ligament of Treitz
 - Submucosal lift: expand sub-mucosal space with saline injection to create a protective thermal barrier
 - Hydrothermal ablation of hyperplastic duodenal mucosa
 - Leads to healthy epithelial regrowth within 4-6 weeks
 - Median procedure duration 45 minutes
 - Patients discharged as a day case and transition from liquid to solid diet post procedure over several days

Rajagopalan, H. et al. Diabetes Care 2016; 39:1-8 Cherrington, A. et al. Gastrointest Endoscopy Clin N Am. 2017;27:299–311 Galvao, N. et al. Video GIE 2016;1(1):10 – 11,

First-in-Human Study

- Single center, single arm study in 44 T2 diabetes patients
- DMR procedure:
 - Ablation of short segment (SS; mean 3.4 cm) or long segment (LS; mean 9.3 cm) of duodenal mucosa
- 2 week graduated diet all patients immediately post-procedure
 - (liquids \rightarrow soft \rightarrow puree)
- No specific protocol for management of anti-diabetic medications

Patient characteristics	N=44	
Age, yrs (range)	53.3 +/- 7.5 (38-65)	
Gender, n (%)		
Female	16 (36.4)	
Male	28 (63.6)	
Weight, kg	84.5 +/- 11.9	
Height, cm	165.2 +/- 8.5	
BMI, kg/m ²	30.9 +/- 3.5	
Systolic BP, mmHg	122.1 +/- 14.4	
Diastolic BP, mmHg	76.9 +/- 8.2	
Duration T2D, yrs (range)	5.7 +/- 2.2 (1-9)	
HbA1c, %	9.5 +/-1.3	
FPG, mg/dL %	184 +/-58	
Oral Anti-diabetic Rx		
Metformin, n (%)	44 (100)	
Sulfonylurea, n(%)	20 (44)	

Rajagopalan, H. et al. Diabetes Care 2016; 39:1-8

First-in-Human Study

- Single center (Chile), single arm study in 44 T2 diabetes patients
- DMR procedure:
 - Ablation of short segment (SS; mean 3.4 cm) or long segment (LS; mean 9.3 cm) of duodenal mucosa
- 2 week graduated diet all patients immediately post-procedure
 - (liquids \rightarrow soft \rightarrow puree)
- No specific protocol for management of anti-diabetic medications

Patient characteristics	N=44	
Age, yrs (range)	53.3 +/- 7.5 (38-65)	
Gender, n (%)		
Female	16 (36.4)	
Male	28 (63.6)	
Weight, kg	84.5 +/- 11.9	
Height, cm	165.2 +/- 8.5	
BMI, kg/m ²	30.9 +/- 3.5	
Systolic BP, mmHg	122.1 +/- 14.4	
Diastolic BP, mmHg	76.9 +/- 8.2	
Duration T2D, yrs (range)	5.7 +/- 2.2 (1-9)	
HbA1c, %	9.5 +/-1.3	
FPG, mg/dL %	184 +/-58	
Oral Anti-diabetic Rx		
Metformin, n (%)	44 (100)	
Sulfonylurea, n(%)	20 (44)	

First-in-Human Study

- Single center (Chile), single arm study in 44 T2 diabetes patients
- DMR procedure:
 - Ablation of short segment (SS; mean 3.4 cm) or long segment (LS; mean 9.3 cm) of duodenal mucosa
- 2 week graduated diet all patients immediately post-procedure
 - (liquids \rightarrow soft \rightarrow puree)
- No specific protocol for management of anti-diabetic medications

Patient characteristics	N=44	
Age, yrs (range)	53.3 +/- 7.5 (38-65)	
Gender, n (%)		
Female	16 (36.4)	
Male	28 (63.6)	
Weight, kg	84.5 +/- 11.9	
Height, cm	165.2 +/- 8.5	
BMI, kg/m ²	30.9 +/- 3.5	
Systolic BP, mmHg	122.1 +/- 14.4	
Diastolic BP, mmHg	76.9 +/- 8.2	
Duration T2D, yrs (range)	5.7 +/- 2.2 (1-9)	
HbA1c, %	9.5 +/-1.3	
FPG, mg/dL %	184 +/-58	
Oral Anti-diabetic Rx		
Metformin, n (%)	44 (100)	
Sulfonylurea, n(%)	20 (44)	

First-in-Human Study: Glucose control

Reductions in postprandial glucose excursion sustained at 3 and 6 months post-DMR procedure

"Ablation length" dose-dependent efficacy of DMR

Rajagopalan, H. et al. Diabetes Care 2016; 39:1-8

First-in-Human Study: Metabolomic changes

FIH Study: open-label, single-center trial

- DMR-treated
- Metabolomic analysis conducted on subcohort (n=14 patients) fasting and postprandial plasma samples at **baseline and 12** wks
- Age 51±2 years; HbA1c 10.2 ± 0.3%
- Data analyzed using Metaboanalyst software
- Systemic metabolome interrogated using gaschromatograpy/mass spectrometry and liquid chromatography/mass spectrometry (Metabolon^{inc})

DMR treatment elicited:

- ↓ lipotoxic stress
- ↓ gluconeogenic drive
- ↓ decreased Warburg Effect ↓ pro-oncogenic metabolic profile

deGravell G, et al. Poster presented at: 4th Paris NASH meeting;; Paris, France.

ipid oxidation

Revita-1: First international multicenter study

Patients with poorly controlled T2D despite > 1 oral anti-diabetic drug No GLP-1 or insulin Ages 28-75 HbA1c 7.5-10% Primary endpoint: Change in HbA1c from baseline to 24 weeks Secondary endpoints: liver enzymes & cardiometabolic parameters

Patient characteristics	N=47
Age, years (range)	55 (31-69)
Gender, n (%) male, female	30 (64); 17 (36)
Duration of type 2 diabetes, years	6 (0.1 – 12)
Weight (kg)	91 ± (13)
BMI (kg/m ²)	31.6 ± (4.3)
HbA1c (%)	8.6 ± (0.8)
Oral antidiabetic medications	
Metformin, n (%)	43 (91)
DPP-4 inhibitor, n (%)	30 (14)
SGLT-2 inhibitor, n (%)	5 (11)
Pioglitazone, n (%)	1(2)

DIABETES, ENDOCRINOLOGY, OBESITY

Van Baar et al ADA 2018 (manuscript in review)

Revita-1: Impact on HBA1c and insulin resistance

Van Baar et al ADA 2018 (manuscript in preparation)

Van Baar et al ADA 2018 (manuscript in review)

Revita-1: Impact on liver transaminases

12 months post DMR procedure, significant improvement in transaminases:

Dotted grey lines represent ALT and AST levels divided into tertiles based on baseline levels (squares: high, triangles: middle, diamonds: low baseline).

Van Baar et al ADA 2018 (manuscript in review)

Revita-2: multicenter sham controlled study

- Patients with poorly controlled T2D despite > 1 oral anti-diabetic drug - Randomized

- 1:1, double blind, sham controlled
- No GLP-1 or insulin; Ages 28-75; HbA1c 7.5-10%
- Primary endpoints: Change in HbA1c at 6 months; change in liver MRI-PDFF at 3 months
- Secondary endpoints: cardiometabolic parameters and mechanistic sub-studies
- 31 open label training cases + 108 randomized and blinded cases

Revita-2: preliminary results – open label cohort

- Main sham controlled study in progress recruitment completed and 6 month results due Q3 2019
- Preliminary 12 week metabolic and MRI data on 24 open label 'training' cases presented at WCITD 2019

Patient characteristics	N=24
Age, years	55 (43-69)
Gender, n (%) male, female	17 (71); 7 (29)
Duration of type 2 diabetes, years (range)	8 (0.4 - 17)
Weight (kg)	89.7 ± (1.9)
BMI (kg/m ²)	31.6 ± (3.0)
HbA1c (%)	8.4 ± (0.17)
Oral antidiabetic medications	
Metformin, n (%)	23 (96)
Sulfonylurea, n (%)	15 (63)
DPP-4 inhibitor, n (%)	9 (38)
SGLT-2 inhibitor, n (%)	5 (21)

Hopkins, et al. Poster presentation WCITD New York City, April 2019

Revita-2: open label cohort

12 weeks post DMR procedure

Hopkins, et al. Poster presentation WCITD New York City, April 2019

Revita-2: open label cohort

12 weeks post DMR procedure:

ALT (U/L) n=24

Reduction MRI-PDFF n=17

Hopkins, et al. Poster presentation WCITD New York City, April 2019

Other ongoing Revita clinical studies

Study	Status	Sample Size	Design	Key Questions
NASH	Initiated 4Q17	N= 14 Uncontrolled open label	Study in biopsy-confirmed NASH	Can DMR improve liver fibrosis, glycemic measures?
INSPIRE	Initiated 4Q17	N=16 Uncontrolled open label	Study in late stage insulin treated T2D	Can DMR+GLP1 allow withdrawal of insulin Rx?
DOMINO	Initiated 2Q18	N=30 Randomized Blinded	Study In women with PCOS	Can DMR improve insulin sensitivity and ovulation in women with PCOS?

Safety and Tolerability

Over 200 DMR treated subjects in FIH, Revita-1, and ongoing Revita-2 studies

No Unanticipated Adverse Device Effects (UADEs) reported

3 episodes stricture in FIH – using earlier version of catheter

Single episode of perforation since redesign – operator rather than device related

No device or procedure related deaths reported

No incidence of pancreatitis, gastro-intestinal bleeding or incidence of injury to surrounding organs

No incidence of procedure-related infection (no systemic infection, no abscess, no sepsis)

Most commonly reported AEs tended to be:

- mild in severity
- reported within the first month of the procedure.
- associated with the GI system post procedure
- infrequent hypoglycemia reported only in presence of sulfonylurea treatment

Summary

Early Clinical Studies of Revita DMR have shown

- 1. Consistent improvements in glycemic control in type 2 diabetes
- 2. Evidence of sustained metabolic response to at least 12 months post-procedure
- 3. Evidence of insulin sensitizing mode if action with \downarrow HOMA-IR, and consistent metabolomic signature
- 4. Evidence to support positive impact on liver
- 5. Excellent safety profile of procedure

These data support considerable potential for clinical utility, particularly in:

- 1. Type 2 diabetes
- 2. NAFLD/ NASH
- 3. Other insulin resistant states

Extensive further data due 2019-2020 which will further define place of DMR in clinical practice