



Endoscopic Duodenal Mucosal Resurfacing (DMR) Improves Glycemic and Hepatic Parameters in Patients with Type 2 Diabetes: Data from a First-in-Human Study

Manoel Galvao Neto, MD<sup>1</sup>, <u>Harith Rajagopalan, MD, PhD<sup>2</sup></u>, Pablo Becerra, MD<sup>3</sup>, Patricia Rodriguez<sup>3</sup>, Paulina Vignolo, MD<sup>3</sup>, Jay Caplan, MBA<sup>2</sup>, Leonardo Rodriguez, MD<sup>3</sup>

<sup>1</sup>Gastro Obeso Center, Sao Paulo, Brazil & Florida International University, Miami, FL, USA <sup>2</sup>Fractyl Laboratories, Inc., Waltham, MA, USA <sup>3</sup>CCO Clinical Center for Diabetes, Obesity & Reflux, Santiago, Chile

# **Disclosures**

### Harith Rajagopalan, MD, PhD

- Employee and shareholder: Fractyl Laboratories, Inc.
- Fractyl Laboratories provided funding for this study



# Background

Bariatric surgeries that prevent nutrient contact with the duodenum improve measures of metabolism in type 2 diabetes (T2D), including indicators of fatty liver disease

▶ Revita™ duodenal mucosal resurfacing (DMR) may offer similar metabolic benefit

# Aim

- To assess procedural safety in patients with suboptimally controlled T2D
  - HbA1c > 7.5% on  $\geq$  1 anti-diabetic agent
- To evaluate the effect of Revita DMR on metabolic parameters

### **The Central Role of Insulin Resistance**



# **Revita DMR: Pathophysiologic Principle**

- Bypass of upper GI tract (surgery, sleeve) exerts potent effects on metabolism through insulin sensitizing pathways
- Nutrient re-exposure to the 'Roux' elicits return to hyperglycemia
- Abnormal hypertrophy of mucosa noted in diabetics' upper GI tract
- Abnormal entero-endocrine cell subpopulation in upper GI mucosa of diabetic patients

Pories et al. Ann Surg. 222 (3): 339–50, 1995; Rohde et al. BMJ. 3(9), 2013; Dirksen et al. Diabetes Care. 33(2):0–2, 2010; Verdam et al. JCEM. 96(2):E379–83, 2011; Theodorakis et al. AJP. 290(3):E550–9, 2006; Gniuli et al. Diabetologia. 53(10):2233–40, 2010



# **Revita DMR Procedure**

- Minimally invasive upper endoscopic therapy using an innovative balloon catheter
- Targets duodenal mucosa between Ampulla of Vater and Ligament of Treitz
- Procedural Steps
  - Size duodenum and lift sub-mucosal space with saline injection to create protective barrier
  - Circumferentially ablate superficial mucosa using a hydrothermal approach to stimulate regeneration
  - Procedure duration ~60 minutes
- No implant, sutures or surgery



## **First-in-Human Study: Methods**

- Single center, single arm study performed in Santiago, Chile, in patients with suboptimally controlled T2D
- Thermal ablation performed on either a short (n=11; mean 3.4 cm) or long (n=28; mean: 9.3 cm) segment of duodenum
- Procedures performed by trained endoscopists with patients under anesthesia
- > 2-week, low calorie, graduated diet for all patients postprocedure (liquids→soft→puree)
- No specific recommendation on post-procedure management of anti-diabetic medication
- Post-procedure endoscopies performed at 1 and 3 months

# **Study Details**

#### Inclusion criteria

- Age 28-75
- BMI 24-40
- HbA1c 7.5-12%
- Disease diagnosed <10 years</li>
- Fasting c-peptide >1 ng/ml
- $\ge 1$  oral anti-diabetes medicine (Rx)

#### > Exclusion criteria

- Prior GI surgery that would preclude procedure
- Anatomical abnormalities
- Anti-GAD Ab+
- Injectable anti-diabetes Rx

| Patient characteristics   | Value (N=44)          |  |  |
|---------------------------|-----------------------|--|--|
| Age, yrs (range)          | 53.4 +/- 7.5 (38-65)  |  |  |
| Sex, n (%)                |                       |  |  |
| Female                    | 16 (36)               |  |  |
| Male                      | 28 (64)               |  |  |
| Weight, kg                | 84.4 +/- 11.9         |  |  |
| Height, cm                | 165.3 +/- 8.4         |  |  |
| BMI, kg/m <sup>2</sup>    | 30.8 +/- 3.5          |  |  |
| Systolic BP, mmHg         | 122.0 +/- 14.2        |  |  |
| Diastolic BP, mmHg        | 77.0 +/- 8.1          |  |  |
| Duration T2D, yrs (range) | 5.7 +/- 2.2 (0.2-9.7) |  |  |
| HbA1c, %                  | 9.6 +/-1.4            |  |  |
| FPG, mg/dL %              | 187 +/-58             |  |  |
| Oral anti-diabetic Rx     |                       |  |  |
| Metformin, n (%)          | 42 (98)               |  |  |
| Sulfonylurea, n(%)        | 16 (37)               |  |  |

Data are mean ± SD or n (%), unless otherwise indicated.



## **Safety & Tolerability**

- Procedure well tolerated with minimal GI symptoms
- > No difficulty tolerating oral diet in the days after the procedure
- AEs generally mild in severity & tended to occur in immediate postprocedure period
- Most common AE was transient abdominal pain due to air insufflation/endotracheal intubation (8/40 patients)
- Most significant AE was duodenal stenosis (3/40 patients)
  - All cases occurred within the first 6 weeks post-procedure
  - Non-emergent and resolved with endoscopic balloon dilation
  - No new cases after procedure and device improvements
- No GI bleeds, perforation, pancreatitis, malabsorption
- No severe hypoglycemia

## Safety & Tolerability: Endoscopy Findings

Follow up endoscopies at 1 & 3 months showed intact mucosa with unremarkable mucosal plicae, indicating full mucosal healing



# Efficacy

- DMR procedure elicited improvements in glycemia (meal challenge plasma glucose, HbA1c)
  - HbA1c reduction of 1.2% at 6 months in efficacy cohort (n=39)
- More robust glycemic effect observed among long segment cohort (n=28)
  - 2.5% reduction in baseline mean HbA1c at 3 months postprocedure vs 1.2% with short segment DMR (p<0.05)</li>
- Modest weight reduction, but no correlation between weight loss and glycemic improvement
- Robust reduction in hepatic transaminase levels (AST, ALT)

## **Overview: Changes in Metabolic Parameters in LS Cohort**

|             | Screening | 1 Month | 3 Month       | 6 Month | Normal* |
|-------------|-----------|---------|---------------|---------|---------|
| HbA1c - %   | 9.6±1.4   | 7.9±1.1 | $7.1 \pm 0.9$ | 8.2±1.6 | 4.0-6.0 |
| Weight - kg | 86±11     | 82±11   | 83±12         | 85±11   |         |
| ALT - IU/L  | 40±23     | 32±17   | 27±14         | 27±12   | ≤ 38    |
| AST - IU/L  | 32±17     | 27±11   | 23±8          | 22±6    | ≤ 40    |

\*Normal range based on ranges reported by lab that processed the samples. All numbers reported as mean  $\pm$  SD.

### DMR Improves Glycemic Measures: Long Segment Cohort (n=28)



- HbA1c reduction of 1.4% at 6 months (p<0.001 for change from screening)
- 14/28 patients had reduction in concomitant anti-diabetic medications post-procedure

# Hepatic Transaminase Changes by Tertile

Lowering of ALT and AST more pronounced in subjects with elevated pre-treatment levels



### **DMR Reduced ALT and AST in Patients** with Radiological Evidence of NAFLD

> Metabolic benefits seen in 22 patients with incidental finding of fatty liver on ultrasound



**AST in LS Subjects with Fatty Liver** 

# Conclusions

DMR improves metabolic control in T2D patients, including a robust and sustained lowering of hepatic transaminase levels

DMR offers the potential for a single-point intervention that improves both glycemia and fatty liver

Further study in patients with fatty liver disease is warranted