Pancreatic Gene Therapy Durably Improves Glycaemia and Delays Disease Progression in a Murine Model of Type 2 Diabetes

Harith Rajagopalan, Camila Lubaczeuski, Emily Cozzi, Nicole Picard, Jacob Wainer, Rebecca Reese, Jay Caplan, Alice Liou

October 4th, 2023
Disclosure Statement

Authors
Harith Rajagopalan, Camila Lubaczeuski, Emily Cozzi, Nicole Picard, Jacob Wainer, Rebecca Reese, Jay Caplan, Alice Liou are employees and shareholders of Fractyl Health, Inc.

Pancreatic Gene Therapy (PGTx) is a preclinical development program which has yet to be assessed by regulatory bodies for investigational or commercial use.
T2D Progression is Driven by Declining Islet Health

Loss of β-cell function is the sine qua non of T2D

Pancreatic Gene Therapy (PGTx) to Improve Islet Function
Potential for durable improvement in β-cell function

Islet cells terminally differentiated, making adeno-associated virus (AAV) a suitable means of durable genetic modification¹,²

Intra-islet GLP1 signaling can improve β-cell function, health, and survival³,⁴

GLP1-based pancreatic gene therapy (GLP1 PGTx driven by the insulin promoter) may restore islet health in T2D via durable local production of GLP1RA

GLP1 PGTx Improves Insulin Production and GSIS in \textit{db/db} Islets

Metabolic improvements in isolated islets 10 weeks after PGTx

A) Islet Transduction

B) GLP1RA Protein Content

C) Insulin Content

D) Glucose-Stimulated Insulin Secretion (GSIS)

Mean ± SD shown; *p<0.05, **p<0.001, ***p<0.0001; n=8 per group. D) Glucose stimulation of 16.7 mM +/- IBMX from 2.8 mM baseline. Rajagopalan et al. ASGCT 2023 oral presentation. Abstract no. 191. AAV=adeno-associated virus, GLP1=glucagon-like peptide 1, GLP1RA=GLP1 receptor agonist, Glu=glucose, GSIS=glucose-stimulated insulin secretion, n.d.=not detectable, PGTx=pancreatic gene therapy
GLP1 PGTx Improves GSIS in Human Islets and Human β-cell Line
Improved GSIS mediated by GLP1R activation in human cells

A) Human Islet Transduction

B) Human Islet GSIS

C) Human β-cell Line GSIS ± Ex9 (GLP1R Antagonist)

Mean ± SEM shown; *p<0.05, **p<0.01; n=2-11 per group. B) Glucose stimulation of 16.7 mM from 2.8 mM baseline, C) Glucose stimulation of 11 mM from 0 mM baseline. Rajagopalan et al. ASGCT 2023 oral presentation. Abstract no. 191. AAV=adeno-associated virus, Ex9=Exendin-9, GFP=green fluorescent protein, GLP1=glucagon-like peptide 1, GLP1R=GLP1 receptor, GLP1RA=GLP1R agonist, Glu=glucose, GSIS=glucose-stimulated insulin secretion, PGTx=pancreatic gene therapy
Local Delivery of PGTx
Proprietary endoscopic ultrasound-guided infusion device

Yucatan pig-model anatomy similar to humans

Proprietary device and endoscopic procedure previously described\(^1,2\)

>50 animals treated with 100% technical success; no adverse safety signals to date

Dose-dependent AAV-GFP expression in targeted pancreatic lobe\(^1,2\)

Low viral genome dose with limited systemic virus exposure – due to local delivery\(^2\)

Mean ± SD shown; n=2-4 per group. 1. Thompson et al. DDW 2023 poster presentation. Control no. 3862948. 2. Rajagopalan et al. ASGCT 2023 oral presentation. Abstract no. 191. AAV=adeno-associated virus, GFP=green fluorescent protein, PGTx=pancreatic gene therapy, VG=vector genomes
Compared to Chronic Semaglutide, Can One-Time GLP1 PGTx:

Improve Glycaemia
Delay T2D Progression
and Prevent Weight Gain?
GLP1 PGTx Efficacy Proof of Concept
db/db murine model de facto standard for T2D development

Single I.P. Injection
(AAV-INS-GLP1RA or Vehicle)

35-day-old mice

Days

0 14 28 42 56 70

Daily S.C. Injections
Semaglutide (10 nmol/kg*) or Vehicle

*Semaglutide dose selected for glucose-lowering optimization1

Efficacy/MOA (day 0-70)
Weekly Fasting Blood Glucose
Biweekly Insulin
Weight

Sacrifice (days 58-70)
Organ Histology
Pancreatic GLP1RA Protein
Serum GLP1RA Protein

1. CDER (2017) Semaglutide NDA Application (209637Orig1s000), Section 4.4 Nonclinical Pharmacology/Toxicology. AAV=adeno-associated virus, GLP1=glucagon-like peptide 1, GLP1RA= GLP1 receptor agonist, INS=insulin promoter, I.P.=intraperitoneal, MOA=mechanism of action, PGTx=pancreatic gene therapy, S.C.=subcutaneous
GLP1 PGTx Expression Restricted to Pancreatic Islets
Safety and feasibility in \(db/db\) murine model are reassuring thus far

High specificity for pancreas

Insulin promoter effectively restricts transgene expression to pancreatic islets
No detectable expression in off-target tissues (e.g., exocrine pancreas)

Favorable toxicity profile

No abnormal findings in animal behaviour or clinical chemistries thus far
Histopathologic analysis showed no evidence of pancreatitis or pancreatic cancer

GLP1=glucagon-like peptide 1, PGTx=pancreatic gene therapy
Glucose-Lowering Efficacy in *db/db* Murine Model

GLP1 PGTx improves fasting glucose vs. daily semaglutide

A) Fasting Blood Glucose
(Week 8, 4-6 hours fasted)

B) Fasting Insulin
(Week 8, 4-6 hours fasted)

Mean ± SEM shown; *p<0.05, **p<0.01, ****p<0.0001; n=8 per group. AAV=adeno-associated virus, Gen=generation, GLP1=glucagon-like peptide 1, GLP1RA=GLP1 receptor agonist, INS=insulin promoter, PGTx=pancreatic gene therapy.
Disease Progression and Durability in *db/db* Murine Model

GLP1 PGTx shifts progression of disease vs. daily semaglutide

![Graph showing disease progression over time for different treatments.](image)

AAV=adeno-associated virus, **FBG**=fasting blood glucose, **Gen**=generation, **GLP1**=glucagon-like peptide 1, **GLP1RA**=GLP1 receptor agonist, **INS**=insulin

EASD 2023

59th Annual Meeting
Body Weight Change in \textit{db/db} Murine Model

GLP1 PGTx prevents weight gain vs. daily semaglutide

23\% lower total body weight with PGTx compared to vehicle

20\% lower total body weight with PGTx compared to semaglutide

Mean ± SEM shown; ****p<0.0001; n=8 per group. AAV=adeno-associated virus, Gen=generation, GLP1= glucagon-like peptide 1, GLP1RA=GLP1 receptor agonist, INS=insulin promoter, PGTx=pancreatic gene therapy
GLP1 PGTx Efficacy Proof of Concept
DIO murine model de facto standard for obesity development

HFD-induction

Fed 60% HFD starting at 5 weeks old for 25 weeks

Aim 50-gram BW start

Single I.P. Injection (AAV-INS-GLP1RA or Vehicle)

Efficacy and HFD-maintenance
Day 15: Daily Body Weight, Food Intake

Single-house, Baseline and HFD-maintenance

Daily S.C. Injections
Semaglutide (10 nmol/kg*) or Vehicle

*Semaglutide dose targeting 15-20% BWL

AAV=adeno-associated virus, BW=body weight, BWL=body weight loss, DIO=diet-induced obesity, GLP1=glucagon-like peptide 1, GLP1RA=GLP1 receptor agonist, HFD=high fat diet, INS=insulin promoter, I.P.=intraperitoneal, PGTx=pancreatic gene therapy, S.C.=subcutaneous
Body Weight Change
GLP1 PGTx improves weight loss vs. semaglutide in DIO model

A) Body Weight

B) Food Intake

Mean ± SEM shown; ***p<0.001, ****<0.0001 treatments vs. vehicle, ##p<0.01 AAV-INS-GLP1RA 2nd Gen vs. semaglutide; n=8-10 per group. AAV=adeno-associated virus, DIO=diet-induced obesity, Gen=generation, GLP1=glucagon-like peptide 1, GLP1RA=GLP1 receptor agonist, INS=insulin promoter, PGTx=pancreatic gene therapy
Early feasibility and safety observations in db/db mice and Yucatan pigs are encouraging.

Compared to chronic semaglutide, single-dose PGTx improves fasting glucose, delays T2D progression, and prevents weight gain in db/db model of T2D.

PGTx lead optimization demonstrates potential for even greater efficacy in T2D and obesity with low pancreatic dose (ongoing studies in DIO model).
Thank You

Acknowledgements

Fractyl Health

Cell and Animal Models

Alice Liou Fitzpatrick
Camila Lubaczeuski
Becky Reese
Nicole Picard

Virus and Gene Delivery

Lin Quek
Gary White
Suya Wang
Keiko Ishida

Device Engineering

Jake Wainer
Mike Biasella

Advisor Support

ERASE Task Force and Advisors

Randy Seeley, PhD (Michigan School of Medicine)

Alan Cherrington, PhD (Vanderbilt University School of Medicine)

Dave D’Alessio, MD (Duke University School of Medicine)

Geltrude Mingrone, MD PhD (Kings College London and Gemelli Hospital Rome)

Jon Campbell, PhD (Duke University School of Medicine)