

Local Delivery and Tissue Restricted Expression to Optimize Therapeutic Profile for Pancreatic Gene Therapy

Harith Rajagopalan, Jason A. West, Alice Liou, Rebecca Reese, Jacob Wainer, Nidhi Khanna, Suya Wang, Keiko Ishida, Nicole Picard, Camila Lubaczeuski, Emily Cozzi, Jay Caplan

May 18, 2023

Disclosure Statement

Authors: Harith Rajagopalan, Jacob Wainer, Alice Liou, Rebecca Reese, Suya Wang, Keiko Ishida, Nicole Picard, Camila Lubaczeuski, Emily Cozzi, and Jay Caplan are employees and shareholders of Fractyl Health, Inc. Jason A. West and Nidhi Khanna are former employees of Fractyl Health, Inc. Christopher C. Thompson, Linda S. Lee, and Rob P. Trasolini are employees of Brigham and Women's Hospital and Harvard Medical School.

Revita[®] is for investigational use only in the United States. The Rejuva[®] platform is in early development and not approved by any regulatory body for investigational or commercial use.

Fractyl Health, Inc.

Pioneering new treatment approaches for type 2 diabetes (T2D)

Complementary development programs targeting key organs in T2D

Revita[®] (targeting the duodenum)

Endoscopic procedure using hydrothermal ablation in the duodenum

Rejuva[®] (targeting the pancreas)

Adeno-associated virus (AAV)—based pancreatic gene therapy platform

Rejuva Directly Targets the Pancreas with Gene Therapy Key therapeutic elements

Endoscopic device and procedure

AAV Gene Therapy Delivery Vehicle

Tissue-Restricted Transgene Expression

Rationale for AAV-GLP1RA Gene Therapy to Improve Islet Function Declining islet health is an early driver of T2D progression

T2D islet:

 β -cell loss of insulin

Fractyl Health 2023

5

a-cell excess glucagon

GLP1RAs reverse both and improve islet cell health¹

Rationale for AAV-GLP1RA Gene Therapy to Improve Islet Function Declining islet health is an early driver of T2D progression

T2D islet:

 β -cell loss of insulin

a-cell excess glucagon

GLP1RAs reverse both and improve islet cell health¹

AAV-GLP1RA gene therapy may address limitations by driving local, durable production of GLP1RA to improve in islet function

EUS-Guided AAV ROA Feasibility in Yucatan Pig

Porcine model approximates human GI tract and pancreas anatomy

*AAV9-CMV-GFP used to assess on target efficacy and acute safety

EUS-Guided AAV ROA in Yucatan Pig

Serum ALT and lipase remained in the normal range across most timepoints

A) 28-day ALT **B)** 7-day Lipase C) 28-day Lipase 70 80 70 60 60 Normal Range 60 50 3x ULN 50 3x ULN U/L 40 40 40 30 30 Normal Normal 20 Range 20 Range 20 10 10 0 0 3 5 7 7 14 21 28 0.5 1.0 14 21 28 0 0 0 Days Days Days 5.0e12 Vehicle 1.0e13 5.0e13 1.5e14

Mean \pm SEM shown; N=13, n=2-4 per group. ALT=alanine transaminase, EUS=endoscopic ultrasound, ROA=route of administration, AAV=adeno-associated virus

EUS-Guided AAV ROA in Yucatan Pig

Dose-dependent expression of GFP throughout targeted splenic lobe

5e13

A) Extensive GFP in Splenic Lobe

Connecting Lobe

Splenic Lobe

B) VG Dose-Dependent GFP in Pancreas

R

03

1e13

1.5e14

9

EUS=endoscopic ultrasound, ROA=route of administration, AAV=adeno-associated virus, GFP=green fluorescent protein, VG=vector genomes

EUS-Guided AAV ROA in Yucatan Pig

~ 40% of splenic lobe endocrine cells express GFP transgene at highest dose

A) Endocrine GFP Expression

B) On-target VCN

10 Fractyl Health 2023

Mean \pm SD shown; n=2-7 per group, EUS=endoscopic ultrasound, ROA=route of administration, AAV=adeno-associated virus, GFP=green fluorescent protein, VCN=vector copy number, VG=vector genomes, DG=diploid genomes

EUS-Guided AAV Route of Administration Feasibility in Yucatan Pig Local vs. systemic delivery AAV biodistribution comparison

A) EUS (4.2e12 VG/kg)

B) I.V. (8.3e12 VG/kg, Li et al. 2022¹)

11 Fractyl Health 2023

Figure adapted from 1. Li et al. Physiol Genomics 54: 261–272, 2022. EUS, N=4; I.V., N=2; EUS=endoscopic ultrasound, ROA=route of administration, AAV=adeno-associated virus, VCN=vector copy number, VG=vector genomes, DG=diploid genomes, I.V.=intravenous

EUS-Guided AAV Route of Administration Feasibility in Yucatan Pig

AAV-GFP biodistribution unaffected by promotor restriction with highest VCN in pancreas

12 Fractyl Health 2023

Dose: 5e13 VG. N=2-4 per group; EUS=endoscopic ultrasound, ROA=route of administration, AAV=adeno-associated virus, GFP=green fluorescent protein, CMV=cytomegalovirus, INS=insulin, VG=vector genome, DG=diploid genome, VCN=vector copy number, SL=splenic lobe, DL=duodenal lobe, CL=connecting lobe

EUS-Guided AAV Route of Administration Feasibility in Yucatan Pig Preliminary AAV-GFP toxicology findings segregated by promotor

Assessment	AAV-INS-GFP (β-cell Restricted, N=7)	AAV-CMV-GFP (Ubiquitous, N=11)
Clinical findings	None	(n=1) ataxia, mild hindlimb paresis, forelimb knuckling (day 24, 5e13 VG)
Clinical blood chemistries	No relevant changes	(n=1) transient elevation in lipase (< 3x ULN) on day 1; normalized by day 4
Hematology	No relevant changes	No relevant changes
Organ weight	No adverse organ weight changes	No adverse organ weight changes
Histopathology	No relevant findings	Minimal to moderate DRG inflammation (C2, T7, and L2 vertebrae)
Immune response	N/A	N/A

EUS-Guided AAV Route of Administration Feasibility in Yucatan Pig Lipase elevation associated with GFP & abolished by promotor restriction

25

Elevated lipase likely related to pancreatic **GFP** expression

AAV-CMV-GFP

500 ur

n=2-4 per group; EUS=endoscopic ultrasound, ROA=route of administration, AAV=adeno-associated virus, GFP=green fluorescent protein, CMV=cytomegalovirus, INS=insulin, VG=vector genome

EUS-Guided AAV Route of Administration Feasibility in Yucatan Pig AAV-GFP DRG toxicity is mitigated by promotor restriction

AAV9-CMV-GFP Inflammation, GFP expression

AAV9-INS-GFP No inflammation, no GFP expression

NF-L Appears to be a Good Biomarker for DRG Toxicity Dose-dependent increases with AAV-CMV but no signal with AAV-INS AAV-CMV-GFP NF-L B) AAV-CMV-GFP vs AAV-INS-GFP NF-L

N=7, n=2-4 per group; AAV=adeno-associated virus, GFP=green fluorescent protein, CMV=cytomegalovirus, INS=insulin, NF-L=neurofilament light chain

Conclusions

Local AAV9 via EUS shows on target gene expression with low viral dose

Favorable biodistribution profile to the pancreas compared to other tissues.

The pig model is a very useful and sensitive model for tox assessment.

Mechanical and molecular confinement of transgene expression thus far appear to optimize therapeutic index

Thank You For Your Attention Acknowledgements

Fractyl Health

Cell and Animal Models

Alice Liou Fitzpatrick

Camila Lubaczeuski

Becky Reese

Nicole Picard

Virus and Gene Delivery

Gary White Suya Wang

Keiko Ishida

External Support

SBH Sciences: Michael Furniss, Beth Griffith, Gerard O'Neil for conducting cell and islet work

Joslin Diabetes Center Islet Isolation Core: Jennifer Hollister-Lock for technical advice and sourcing mouse islets

Human Cell Design: Bruno Blanchi for sourcing EndoC-BH5 cells

InSphero AG: Sayro Jawurek, Alexandra Title, Maria Karsai for the human islets microtissue experiments

ERASE Task Force: Randy Seeley, PhD (Michigan School of Medicine) and Alan Cherrington, PhD (Vanderbilt University School of Medicine) for scientific expertise and data interpretation

Jake Wainer Mike Biasella Fractvl Health 2023 18