Improvements In Insulin Sensitivity Seen In Patients With Type 2 Diabetes After Revita® DMR Are Associated With A Decrease In Glucagon, Glucose, And GIP After A Mixed Meal Tolerance Test

Suzanne Meiring¹#, Celine B.E. Busch¹# MD, Annieke C.G. van Baar² MD, PhD, Ralph DeFronzo³ MD, Kelly White⁴ PharmD, Juan Carlos Lopez Talavera⁴ MD, PhD, Moira Hagen⁴ PhD, Max Nieuwdorp⁵ MD, PhD, Jacques J.G.H.M. Bergman⁶* MD, PhD

¹PhD candidate, Gastroenterology and Hepatology, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands; ²Postdoctoral researcher, Gastroenterology and Hepatology, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands; ³Diabetes Division, University of Texas Health Science Center; Texas Diabetes Institute, San Antonio, TX; ⁴Fractyl Health, Lexington MA; ⁵Internal and Vascular Medicine, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands; ⁶Gastroenterologist, Gastroenterology and Hepatology, Amsterdam University Medical Centres, location AMC, Amsterdam, the Netherlands; #Authors contributed equally. *Corresponding author.

May 22, 2022
Disclosures/Disclaimers

Revita DMR is limited in the US to investigational use under Federal law

S. Meiring, C. Busch, A. van Baar have no disclosures to note

R. DeFronzo participates in advisory boards for AstraZeneca, Novo Nordisk, Bayer, Boehringer-Ingelheim, Intarcia; has research support from Boehringer-Ingelheim, AstraZeneca, Merck and is on a speaker’s bureau for AstraZeneca

J.C. Lopez Talavera, K. White, and M. Hagen are full-time employees of Fractyl Health, and may hold Fractyl stock and/or stock options

M. Nieuwdorp is supported by a personal ZONMW-VICI grant 2020 [09150182010020]

J. Bergman has received research support from Fractyl Laboratories Inc for IRB-based studies and has received consultancy fees from Fractyl Health

Fractyl Health participated in the study design; study research; collection, analysis, and interpretation of data; and writing, reviewing, and approving this presentation. All authors had access to the data; participated in the development, review, and approval of the presentation for the DDW. Fractyl funded the research for this study.
The role of the proximal gut in metabolic disease

Introduction
Methodology
Results
Summary
Conclusion

Diet

Direct/Indirect Mechanisms

Duodenal mucosa

Liver

Brain

Insulin Resistance
Hyperglycemia
Inflammation

Intestines

Type 2 Diabetes

Fat

Pancreas

Bariatric Surgery as a treatment for T2D
The duodenum as a target

Glycated Hemoglobin Level (%)

Months

- Medical therapy
- Sleeve gastrectomy
- Gastric bypass

$p < 0.001$

Revita DMR®: Duodenal Mucosal Resurfacing System
Investigational Device for the potential treatment of T2D

Submucosal injection of saline
Hydrothermal ablation
From Papilla to Treitz Flexure
DMR improved glucose control

Revita-1, open-label multicenter (oral T2D meds), N=46

Decrease in HbA1c of 0.8 ± 1.2%, durable to 2 years
DMR improved glucose control

Revita-1, open-label multicenter (oral T2D meds), N=46
Decrease in HbA1c of 0.8 ± 1.2%, durable to 2 years

Revita-2, multicenter RCT (oral T2D meds), N=109
Significant difference in HbA1c Sham vs DMR

HbA1c, % (Europe)

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>DMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median change in HbA1c from baseline to 24 weeks</td>
<td>-0.28</td>
<td>-0.80</td>
</tr>
</tbody>
</table>

p = 0.033

DDW2022 | May 21–24, 2022
DMR improved glucose control

Revita-1, T2D open-label multicenter (oral T2D meds), N=46
Decrease in HbA1c of 0.8 ± 1.2%, durable to 2 years

Revita-2, T2D multicenter RCT (oral T2D meds), N=109
Significant difference in HbA1c Sham vs DMR

INSPIRE, T2D open-label single center (basal insulin), N=16
69% discontinued insulin after DMR + GLP-1RA

T2D Patients off insulin (HbA1c <7.6%)

Baseline 69%, 6 mo 56%, 12 mo 53%
The role of the proximal gut in metabolic disease

Diet

- **Direct/Indirect Mechanisms**
- **Duodenal mucosa**
- **Liver**
- **Brain**
- **Insulin Resistance**
- **Hyperglycemia**
- **Inflammation**
- **Pancreas**
- **Type 2 Diabetes**
- **Intestines**
- **Fat**

Methodology, Mixed meal test

Standardized liquid meal
200 ml
400 kcal
20 g protein
45 g carbohydrates
15.6 g fat

Direct/Indirect Mechanisms

Blood Draw @ T(0,15,30,45,60,90, 120,180 min)

Gut-hormones stimulating insulin production
- GLP-1
- GIP

Glucose
Insulin
C-Peptide
Glucagon

Incretins

Introduction
Methodology
Results
Summary
Conclusion
Methodology

Revita-1, subset who underwent Mixed Meal Test (MMT) (n=13)

Revita-2, open-label phase who underwent MMT (n=15)

Mixed Meal Test Performed
Baseline and 3 months post-DMR

n = 28

Selection Criteria
- ≥ 3 ablations
- Stable diabetes medication
- HbA1c: 7.6 – 10.0%

Endpoints
- Glucose, insulin, glucagon, c-peptide, incretins
- HOMA-IR, Matsuda Index
- Insulin secretion rate, disposition index

Analysis
- Mixed Effect Models
- AUC and iAUC

Introduction | Methodology | Results | Summary | Conclusion
Baseline Characteristics

<table>
<thead>
<tr>
<th>Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>55 (50 – 63)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>86</td>
</tr>
<tr>
<td>Duration of T2D (y)</td>
<td>6.8 (3 – 10)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>31.4 (29 – 34)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.2 (7.9 - 9.0)</td>
</tr>
</tbody>
</table>

Data are expressed as median (IQR) or %
Glucose control improved

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n=28)</th>
<th>3 months (n=28)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, kg</td>
<td>91.7</td>
<td>87.4</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>31.4</td>
<td>29.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Fasting Insulin, pmol/L</td>
<td>11.9</td>
<td>8.8</td>
<td>0.004</td>
</tr>
<tr>
<td>Fasting C-peptide, nmol/L</td>
<td>3.07</td>
<td>2.43</td>
<td>0.001</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>8.2</td>
<td>7.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Fasting glucose, mg/dL</td>
<td>198</td>
<td>162</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>5.4</td>
<td>3.6</td>
<td>0.005</td>
</tr>
<tr>
<td>Matsuda index</td>
<td>2.64</td>
<td>3.49</td>
<td>0.005</td>
</tr>
<tr>
<td>Insulin Secretion Rate</td>
<td>4x10^5</td>
<td>5x10^5</td>
<td>0.002</td>
</tr>
<tr>
<td>Disposition Index</td>
<td>4.71</td>
<td>6.46</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Data are expressed as median or %
Insulin sensitivity improved

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n=28)</th>
<th>3 months (n=28)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, kg</td>
<td>91.7</td>
<td>87.4</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>31.4</td>
<td>29.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Fasting Insulin, pmol/L</td>
<td>11.9</td>
<td>8.8</td>
<td>0.004</td>
</tr>
<tr>
<td>Fasting C-peptide, nmol/L</td>
<td>3.07</td>
<td>2.43</td>
<td>0.001</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>8.2</td>
<td>7.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Fasting glucose, mg/dL</td>
<td>198</td>
<td>162</td>
<td><0.001</td>
</tr>
</tbody>
</table>

HOMA-IR

<table>
<thead>
<tr>
<th>HOMA-IR</th>
<th>Baseline (n=28)</th>
<th>3 months (n=28)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>33% Improvement</td>
<td>3.6</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Matsuda index

<table>
<thead>
<tr>
<th>Matsuda index</th>
<th>Baseline (n=28)</th>
<th>3 months (n=28)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.64</td>
<td>32% Improvement</td>
<td>3.49</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- **Insulin Secretion Rate**: 4x10^5 to 5x10^5, p=0.002
- **Disposition Index**: 4.71 to 6.46, p=0.001

Data are expressed as median or %

Introduction | Methodology | Results | Summary | Conclusion
β-cell function improved

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n=28)</th>
<th>3 months (n=28)</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, kg</td>
<td>91.7</td>
<td>87.4</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>31.4</td>
<td>29.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Fasting Insulin, pmol/L</td>
<td>11.9</td>
<td>8.8</td>
<td>0.004</td>
</tr>
<tr>
<td>Fasting C-peptide, nmol/L</td>
<td>3.07</td>
<td>2.43</td>
<td>0.001</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>8.2</td>
<td>7.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Fasting glucose, mg/dL</td>
<td>198</td>
<td>162</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>5.4</td>
<td>3.6</td>
<td>0.005</td>
</tr>
<tr>
<td>Matsuda index</td>
<td>2.64</td>
<td>3.49</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Insulin Secretion Rate
- \(4 \times 10^5 \) 25% Improvement \(5 \times 10^5 \) 0.002

Disposition Index
- 4.71 37% Improvement 6.46 0.001

Data are expressed as median or %
Glucagon Decreased

Glucagon

- Baseline
- 3 months

p-value <0.001

Time (min)

- 15
- 30
- 45
- 60
- 90
- 120
- 150
- 180

Mean (SD) Glucagon (pmol/L)

Glucagon AUC

- Median (IQR) Glucagon AUC (pmol/L * min)

- Baseline
- 3 Months

p=0.032

Fractyl Health May 2022 | Confidential

Introduction

Methodology

Results

Summary

Conclusion
Incretins did not change

GLP-1

GIP

\(p \)-value <0.564

\(p \)-value <0.958
Correlation glucose control and GIP

Inverse relationship between MI and GIP

Patients with improved insulin sensitivity had a decreased GIP

Introduction

Methodology

Results

Summary

Conclusion

Correlation ΔMI + ΔGIP

ΔGIP AUC
p-value 0.004; r-value -0.580

ΔGIP iAUC
p-value 0.031; r-value -0.451

ΔMatsuda Index (MI) at 3 months

ΔGIP (pmol/L)
Summary

Insulin sensitivity and β-cell function improved

- Further validates the duodenum as target for T2D

FPG and Glucagon decreased

- Indicates beneficial effects of DMR

Incretins did not change

- Improved insulin sensitivity was correlated to a decreased GIP
Summary

Insulin sensitivity and β-cell function improved

- Further validates the duodenum as target for T2D

FPG and Glucagon decreased

- Indicates beneficial effects of DMR

Incretins did not change

- Improved insulin sensitivity was correlated to a decreased GIP
Summary

Insulin sensitivity and β-cell function improved

- Further validates the duodenum as target for T2D

FPG and Glucagon decreased

- Indicates beneficial effects of DMR

Incretins did not change

- However, improved glucose control correlated to a decrease in GIP
Study Limitations and Conclusions

Limitations

- Post-hoc analysis small sample size
- No controls
- High variability in glucoregulatory hormones (GLP-1 and GIP)

Conclusions

- Revita® DMR improved insulin resistance and β-cell function
- Duodenum as a target for T2D
Study Limitations and Conclusions

Limitations

- Post-hoc analysis small sample size
- No controls
- High variability in glucoregulatory hormones (GLP-1 and GIP)

Conclusions

- Revita® DMR improved insulin sensitivity and β-cell function
- Confirms duodenum as a therapeutic target for T2D