Proton-density fat fraction-derived R2* liver iron concentration – an exploratory study of Revita-2 phase II trial data

Manil D Chouhan¹, Naomi Sakai¹, Francisco Torrealdea², Kelly White³, Juan-Carlos Lopez Talavera³, Alan Bainbridge², Stuart A Taylor¹.

1. UCL Centre for Medical Imaging, University College London, London, UK
2. Department of Medical Physics, University College London Hospitals, UK
3. Fractyl Laboratories Inc., Lexington, MA, USA
Declaration of Financial Interests or Relationships

Speaker Names: Kelly White, Juan-Carlos Lopez Talavera

Have the following financial interest or relationship(s) to disclose with regard to the subject matter of this presentation:

- Employment: full-time employees of Fractyl Laboratories Inc and may hold Fractyl stock and/or stock options.

Speaker Names: Manil D Chouhan, Naomi Sakai, Francisco Torrealdea, Alan Bainbridge, Stuart A Taylor

Have no financial interests or relationships to disclose with regard to the subject matter of this presentation.
▪ Use of MRI-based proton density fat fraction (PDFF) measurements of liver fat for clinical trial primary endpoints is well established.

▪ Accuracy of PDFF liver fat fraction measurements is reliant on correction for T2/T2* related signal decay
Signal Intensity

out-of-phase (OP) in-phase (IP)

Echo time (TE)

(adapted from Sirlin CB, ‘Hepatic Steatosis - Liver MR Imaging: Quantitative Approaches to Liver Disease’, ISMRM Hawaii, 2017.)
Multi-echo data can be modelled to generate T2* maps, for FF map correction:

T2* maps are generated as part of the PDFF measurements and can be used to estimate liver iron concentration (LIC).

(from Henninger B et al. RöFo. 2015;187(06):472-479, for measurements at 1.5T.)
Dysregulation of iron homeostasis has been associated with:

- non-alcoholic fatty liver disease (NAFLD)
- and type 2 diabetes mellitus (T2DM)

The value of PDFF-derived T2*/R2* for quantification of LIC across varying siderosis/steatosis is under ongoing investigation.

DMR is an endoscopic treatment designed to reduce insulin resistance and hyperinsulinemia.\(^1,2\)

Prior studies (Revita-1) showed a single DMR procedure improves hepatic and glycemic parameters through 2 years in patients with T2DM, indicating potential benefit in T2DM ± NAFLD/NASH.\(^3-6\)

Revita-2 is a blinded, sham-controlled international multi-site multi-scanner vendor cross-over trial (NCT02879383).

Investigation of the effect of DMR on hepatic and glycaemic parameters in patients with poorly controlled T2DM

Trial endpoints include absolute and relative change in liver MRI-PDFF from baseline at 12 weeks (in patients with MRI-PDFF >5% at baseline)
1. To explore the association between PDFF-derived R2* LIC measurements and liver FF

2. To determine if there is a difference in the strength of association between relative change in FF and LIC at 12 weeks:

 in DMR and sham-treatment cohorts

 to support the presence of any treatment-induced mechanistic differences in hepatic iron metabolism
Patients recruited at 8 EU sites

Data were acquired at 7 sites (4 Philips & 1 GE 3T system, 1 Philips & 1 GE 1.5T system).

Vendor-derived PDFF sequences (e.g. Philips mDixonQuant, GE IDEAL-IQ) were used.
Baseline and 12-week post-treatment liver MRI scans

- Initial open-label training (n=17) cohort
- DMR (n=39) cohort
- Sham (n=23) cohort
Methods – Image analysis

- Custom-developed online platform (Ambra Health, New York, USA)

- Circular ROIs measuring up to 20mm diameter

- Colocalised on PDFF maps and T2* maps

- LIC (μmol/g) estimated from T2* data using previously reported methods

Linear regression with calculation of Pearson’s correlation coefficient

Relationship assessed:

a) Between baseline absolute liver FF and LIC measurements

b) Between relative (%) change in liver FF and LIC at 12 weeks post-treatment
Results – Baseline correlation

$r = 0.6097, P<0.0001$
Results – Training case cohort

$r = 0.7025, P=0.0024$
Results – DMR vs Sham cohort

DMR

Sham

$r = 0.4943, P=0.0016$

$r = 0.3235, P=0.1322$
The significant positive correlation demonstrated between PDFF-derived liver FF and LIC is comparable with previously reported results\(^1\).

This finding is important, given that data has been collated from multiple field strengths and patients with normal range LIC levels (<36 μmol/g)\(^2\).

- Significant linear correlations between post-treatment relative (%) change in liver FF and LIC in both training and DMR cohorts were noted.

- Weaker non-significant correlations in the sham cohort raise the possibility of altered mechanistic effects on hepatic iron metabolism as a result of treatment.

- To better understand this phenomenon, ongoing studies using non-imaging biomarkers of iron metabolism are underway.
Conclusions

- PDFF-derived liver FF and LIC are positively correlated at baseline.

- Relative change in liver FF and LIC at 12 weeks is more strongly correlated post-DMR than in sham-treated patients raising the possibility of altered mechanistic effects on hepatic iron metabolism as a result of DMR.

Questions?
m.chouhan@ucl.ac.uk