MRI liver proton density fat fraction in patients with type 2 diabetes mellitus following treatment with Duodenal Mucosal Resurfacing – results from a randomised, double-blind, sham-controlled, prospective, multicentre study –

Manil D Chouhan1, Naomi Sakai1, Kelly White2, Vijeta Bhambhani2, Juan-Carlos Lopez Talavera2, Alan Bainbridge3, Stuart A Taylor1.

1. UCL Centre for Medical Imaging, University College London, London, UK
2. Fractyl Laboratories Inc., Lexington, MA, USA
3. Department of Medical Physics, University College London Hospitals, UK
To investigate the effects of endoscopic Duodenal Mucosal Resurfacing (DMR) in patients with sub-optimally controlled type 2 diabetes mellitus (T2DM) on liver fat fraction (FF) using MRI proton density fat fraction (PDFF).
DMR catheter is designed to perform submucosal lift and hydrothermal ablation of hyperplastic duodenal mucosa, promote healthy epithelial regrowth within 12 weeks, and reduce insulin resistance and hyperinsulinemia\(^1,2\)

6. van Baar ACG et al., DTM 2019 poster VAN 19122D.

REVITA-2 NCT02879383; DMR = duodenal mucosal resurfacing; NAFLD = nonalcoholic fatty liver disease; NASH = nonalcoholic steatohepatitis; T2D = type 2 diabetes.
DMR is a well-tolerated procedure with few, self-limited side effects3-5

Prior studies (eg, REVITA-1) showed a single DMR procedure durably improves hepatic and glycemic parameters through 2 years in patients with T2D, indicating potential benefit in T2D with concomitant NAFLD/NASH3-6
Prospective, sham-controlled study of the effect of DMR on hepatic and glycaemic parameters in patients with sub-optimally controlled T2D across 11 sites (9 in EU, 2 in Brazil)

Objective

Demonstrate DMR efficacy and safety compared with sham for the treatment of suboptimally controlled T2D

Key Inclusion Criteria

- Aged 28 – 75 years
- T2D with evidence of preserved insulin secretion (fasting insulin > 7.0 μU/ mL)
- HbA1c 7.5 – 10%
- BMI ≥ 24 and ≤ 40 kg/m²
- On ≥ 1 oral antidiabetic medication (≥ 1 must be metformin)
- No medication or dose changes 12 weeks prior to study entry
- Able to comply with study and understand/sign informed consent

Key Exclusion Criteria

- Current use of insulin or GLP-1
- History of severe hypoglycemia
- Known autoimmune disease
- Active *H. pylori* infection
- Previous GI surgery (including bariatric)
- Participating in another ongoing clinical trial of an investigational drug or device

Data on File, Fractyl Laboratories Inc.

BMI = body mass index; GI = gastrointestinal; GLP-1 = glucagon-like peptide-1; HbA1c = hemoglobin A1c; T2D = type 2 diabetes.
Sham-controlled multi-site, multi-scanner vendor cross-over study of the effect of DMR with MRI derived primary and secondary endpoints.

Absolute change in liver MRI-PDFF from baseline at 12 weeks (in patients with MRI-PDFF > 5% at baseline)

• Relative change from baseline in liver MRI-PDFF in patients with MRI-PDFF > 5% at baseline

Change in HbA1c from baseline
Incidence rates of device/procedure-related SAEs, UADEs, and AESIs through 24 weeks

AESI = adverse event of special interest; ALT = alanine aminotransferase; AST = aspartate aminotransferase; BG = blood glucose; BMI = body mass index; DMR = duodenal mucosal resurfacing; MRI-PDFF = magnetic resonance imaging proton density fat fraction; NAFLD = nonalcoholic fatty liver disease; NASH = nonalcoholic steatohepatitis; OAD = oral antidiabetic medication; SAE = serious adverse event; T2D = type 2 diabetes; UADE = unanticipated adverse device effects.
MRI-based proton density fat fraction (PDFF) can be used to quantify liver fat.

Vendor-derived PDFF sequences (e.g. Philips mDixonQuant, GE IDEAL-IQ) were used for multi-site, multi-vendor, multi-field strength studies.
- Images were analysed using a custom-developed online platform (Ambra Health, New York, USA)

- Circular ROIs measuring up to 20mm diameter were placed on each of the 9 Coinaud liver segments
Longitudinal measurement stability was confirmed using custom-built fat-water liquid-emulsion based phantoms.
Prespecified interaction statistical tests **assessed homogeneity** across geographic regions.

Brazil not homogeneous to European countries in hepatic and glycemic endpoints, regardless of treatment group.

Brazilian and European populations not poolable, analyses were stratified by region.
Results – Patient demographics and baseline characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DMR (N = 39)</th>
<th>Sham (N = 36)</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>59.0 (40.0, 72.0)</td>
<td>56.5 (35.0, 75.0)</td>
<td>0.62</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>30 (76.9)</td>
<td>28 (77.8)</td>
<td>0.93</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>93.1 (64.8, 155.0)</td>
<td>94.5 (66.6, 113.4)</td>
<td>0.66</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>31.4 (23.6, 39.5)</td>
<td>30.4 (24.2, 39.6)</td>
<td>0.16</td>
</tr>
<tr>
<td>Liver MRI-PDFF, % > 5% at baseline, n (%)</td>
<td>16.5 (5.5, 33.0)</td>
<td>16.1 (5.6, 33.8)</td>
<td>0.50</td>
</tr>
<tr>
<td>ALT, U/L</td>
<td>31.0 (11.0, 76.0)</td>
<td>29.0 (12.0, 162.0)</td>
<td>0.65</td>
</tr>
<tr>
<td>AST, U/L</td>
<td>21.0 (11.0, 44.0)</td>
<td>19.5 (10.0, 131.0)</td>
<td>0.31</td>
</tr>
<tr>
<td>Fasting glucose, mg/dL</td>
<td>191.0 (122.0, 313.0)</td>
<td>185.5 (110.0, 344.0)</td>
<td>0.68</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>8.1 (7.5, 10.0)</td>
<td>8.2 (7.5, 10.0)</td>
<td>0.45</td>
</tr>
<tr>
<td>C-peptide, ng/mL</td>
<td>2.5 (0.7, 4.9)</td>
<td>2.3 (1.5, 5.0)</td>
<td>0.48</td>
</tr>
<tr>
<td>Fasting insulin, mU/L</td>
<td>9.8 (2.4, 22.6)</td>
<td>8.4 (3.9, 17.6)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

All data cited as median (min, max), unless stated

*Mann-Whitney U test for continuous variables due to non-normality and chi-squared test (or Fisher’s exact test when appropriate) for categorical variables, unless otherwise specified.

ALT = alanine aminotransferase; AST = aspartate aminotransferase; BMI = body mass index; HbA1c = hemoglobin A1c
Changes in Liver MRI-PDFF in Patients with > 5% Liver Fat Content at Baseline (mITT)

Treatment comparison one-sided p value based on ANCOVA model with Multiple Imputation on the rank values (modified ridit scores). Via multiple imputation, analysis is based on all patients in the population of interest where post-rescue values are first set to missing.
>30% reduction in relative liver MRI-PDFF from baseline to week 12

Responder Analysis: > 30% reduction in relative liver MRI-PDFF from baseline to week 12 (mITT)
% of Patients
53.3
22.2
p = 0.008
n = 16
n = 6
Sham
DMR
Results - Patients with baseline fasting plasma glucose ≥180 mg/dL

Baseline median (min, max) liver MRI-PDFF: 20.3 (8.0, 35.8)

Absolute change in liver MRI-PDFF from baseline to 12 weeks, %

- **DMR**: n = 14
 - Mean change: −8.0%
 - p = 0.006
- **Sham**: n = 14
 - Mean change: −2.1%

Median change in HbA1c from baseline to week 24, %

- **DMR**: n = 19
 - Median change: −1.2%
 - p = 0.005
- **Sham**: n = 19
 - Median change: −0.3%

Greater benefit in patients with higher FPG at baseline
DMR elicits favourable effects on liver PDFF at 12 weeks, in patients with sub-optimally controlled T2DM.