INTRODUCTION: Bariatric surgery improves glycemia in type 2 diabetes (T2D). Exclusion of nutrient contact with an abnormal duodenal surface may be a key mechanistic contributor, involving potential weight-independent changes in insulin sensitivity. DMR, a minimally invasive, upper endoscopic procedure involving thermal ablation of the duodenal mucosa, also appears to elicit glycemic improvements in T2D. We report the first-in-human clinical experience with DMR. METHODS: Assess procedural safety and glycemic measures for 6 months after a single DMR procedure in patients with T2D and Hba1c > 7.5% on at least 1 oral anti-diabetic agent. METHODS: Using novel balloon catheters, DMR was conducted on varying lengths of duodenum in anesthetized patients at a single center (Santiago, Chile). RESULTS: A total of 39 patients were treated (baseline Hba1c: 9.5%): 28 had ablation of a long-duodenal segment (LS-DMR; ~9.3 cm treated) and 11 had short-segment ablation (SS-DMR; ~3.4 cm treated). Baseline Hba1c was reduced by 1.2% at 6 months in the full cohort. More potent glycemic effects were observed among the LS-DMR cohort, who experienced a 2.5% reduction in baseline mean Hba1c at 3 months post-procedure vs 1.2% with SS-DMR (p<0.05). Excluding patients who reduced concomitant anti-diabetic medication post-procedure, LS-DMR among patients with baseline Hba1c of 7.5-10% (~6) lowered Hba1c from a mean of 8.8% to 7.1% at 6 months (p<0.05), accompanied by a modest weight reduction of 2.3 kg. Overall, DMR was well tolerated with minimal gastrointestinal symptoms post-procedure. Three patients experienced duodenal stenosis that required balloon dilation. CONCLUSIONS: To date, single procedure DMR elicits a robust improvement in glycemia in T2D with acceptable safety and tolerability. Further examination of safety, efficacy, durability and possible mechanisms is needed.

Methods

• Adults with poorly controlled T2D (Hba1c > 7.5% on at least 1 oral anti-diabetic agent) underwent ablation of a short segment (SS-DMR; <6 cm ablated) or long segment of duodenum (LS-DMR; >9 cm ablated) using novel balloon catheters (Revita™ DMR System, Fractyl Laboratories, Waltham, MA, USA)
• Procedural steps: duodenal sizing→ saline expansion of sub-mucosa→ hydrothermal ablation of superficial mucosa
• All procedures were performed at a single center in Santiago, Chile by trained endoscopists
• 2-week, low calorie, graduated diet for all patients post-procedure (liquids→soft→puree)
• No specific recommendation on management of anti-diabetic medication post-procedure

Results

• 44 consecutive patients were enrolled, 39 treated
 ○ 28 LS-DMR (mean length ablated: 9.3 cm)
 ○ 11 SS-DMR (mean length ablated: 3.4 cm)
• Baseline (mean): age=53.3 y; weight= 84.5 kg; Hba1c=9.5%; fasting plasma glucose (FPG)=184 mg/dL
• 5 excluded patients: 4 did not receive DMR (2 failed screening endoscopy, 1 tortuous anatomy, 1 procedure duration), 1 excluded for anti-GAD +

Safety & Tolerability

• Procedure well tolerated with minimal GI symptoms
• 3 patients experienced duodenal stenosis that required endoscopic balloon dilation, with good resolution
• No GI bleeds, perforation, pancreatitis, evidence of malabsorption or hypoglycemia
• Follow up endoscopies indicate full mucosal healing by 1 month post-procedure (Fig. 1)

Efficacy

• Hba1c reduction in full cohort: 1.2% at 6 months
• LS-DMR had more potent glycemic effects
 ○ 2.5% reduction in baseline mean Hba1c at 3 months post-procedure vs 1.2% with SS-DMR (p<0.05)
 ○ Early and sustained improvement in FPG plus improvement in post-prandial glucose (Fig. 2 & 3)
• Greater effects in patients on stable medications (Fig. 4)
• Modest weight reduction (2-4%), but no apparent correlation between degree of weight loss and glycemic improvement

Conclusions

• In this first-in-man study, single procedure DMR substantially improved glycemic control in patients with T2D, with acceptable safety and tolerability to date
• Upper GI procedural intervention may be a novel way to improve glycemia in T2D

Abstract

Early clinical experience of duodenal mucosal resurfacing (DMR), a new endoscopic approach to treating type 2 diabetes

Alan D. Cherrington1, Leonardo Rodriguez2, Pablo Becerra2, Patricia Rodriguez2, Paulina Vignolo2, Harith Rajagopalan3, Jay Caplan3, Geltrude Mingrone4, Manoel P. Galvão Neto4

1Vanderbilt University Medical Center, USA; 2CCO Clinical Center for Diabetes, Obesity and Reflux, Chile; 3Fractyl Laboratories, Inc., USA; 4Catholic University of Rome, Italy; 5Gastro Obeso Center, Brasil & Florida International University, USA
