Duodenal Mucosal Resurfacing Reduces Liver Fat in Patients with Type 2 Diabetes

D. Maggs1, A. Vedala1, M. Burk1, N.S. Sakai1, A. Bainbridge1, S. A. Taylor2, and M. Chouhan1 on behalf of the REVITA 2 Study Investigators
1Fraxyl Laboratories Inc., Lexington MA, United States; 2UCL Centre for Medical Imaging, University College London, London, United Kingdom; Department of Medical Physics, University College London Hospitals NHS Trust, London, United Kingdom.

Introduction
• Duodenal Mucosal Resurfacing (DMR) is currently being investigated as a treatment for metabolic diseases including Type 2 diabetes (T2D).
• Data from the recent multicenter, single-arm Revita-1 study in T2D patients demonstrated sustained reductions to 12 months in HbA1c, fasting plasma glucose (FPG), and Homeostasis Model Assessment index (HOMA-IR) as well as a lowering of liver transaminase levels.

Objective
• The Revita-2 clinical trial (NCT02879393) is a blinded, sham controlled study designed to examine the effects of DMR on glycemic and other metabolic parameters in patients with T2D, including measures of fat fraction in the liver through magnetic resonance (MR).
• The trial involves a training phase in which the study sites familiarize themselves with the intervention procedure before beginning the randomized phase of the protocol. This creates an open label case cohort distinct from the randomized cohort. All subjects enrolled in the open-label cohort are treated with the DMR procedure and are followed per protocol for 48 weeks.

Methods
• Eligible patients participate in a 4 week oral anti-diabetic medication run-in period to establish stable baseline glycemia in conjunction with medication compliance and nutritional counseling. Oral anti-diabetic medications are to be held constant from start of run-in period through the 24 week endpoint following a predefined rescue algorithm for hypo- and hyperglycemia.

Results
• Subjects under deep sedation undergo the DMR procedure while in a left lateral position.
• The catheter (followed by an endoscope for visualization) is inserted trans- orally over a stiff guidewire into the duodenum to a location just distal to the papilla (Figure 1A and B).
• The duodenum is treated by performing circumferential mucosal lifting followed by hydrothermal ablation at five sequential locations between the papilla and ligament of Treitz (Figure 1C).
• Prior to initiation of the randomized cohort phase, each Revita-2 study site is required to conduct up to 5 (open-label) training cases for a maximum of 50 total cases. The data from the training cases will not be included in the randomized primary efficacy analysis and is presented here as an independent, preliminary report.
• Liver MR was performed at selected sites at baseline and 12 weeks on the same MR scanner for each patient (three 3.0T and two 1.5T systems) using vendor-derived proton density fat fraction sequences. For each scan, nine region-of-interest (ROI) were placed in each CoRaul duodenal segment with change in mean ROI liver fat assessed for each subject.

Efficacy
• Key procedural metrics including procedure time, defined as catheter in to catheter out duration, and number of ablations completed vs. intended are shown in Table 2.

Table 1. Patient Demographics and Baseline Characteristics

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>Baseline (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (mean ± SD)</td>
<td>58 ± 39 (49%)</td>
</tr>
<tr>
<td>Sex, %</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>7 (29%)</td>
</tr>
<tr>
<td>Male</td>
<td>17 (71%)</td>
</tr>
<tr>
<td>Duration of T2D, years (range)</td>
<td>8 (4-17)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>89.3 ± 7.9</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>31.6 ± 3.3</td>
</tr>
<tr>
<td>Oral anti-diabetic medications</td>
<td></td>
</tr>
<tr>
<td>Metformin, n (%)</td>
<td>23 (96%)</td>
</tr>
<tr>
<td>Sulfonylurea, n (%)</td>
<td>15 (63%)</td>
</tr>
<tr>
<td>DPP-4 inhibitor, n (%)</td>
<td>9 (38%)</td>
</tr>
<tr>
<td>SGLT2 inhibitor, n (%)</td>
<td>5 (21%)</td>
</tr>
</tbody>
</table>

Fasting Triglycerides (mg/dl) | 209 ± 32 | 150 ± 20 | < 0.01
Fasting HDL (mg/dl) | 45.7 ± 2.8 | 49.2 ± 3.2 | < 0.05
Ferritin (ng/ml) | 98.1 ± 20.9 | 72.0 ± 18.7 | < 0.01
Fasting Plasma Insulin (μU/ml) | 13.6 ± 1.8 | 9.8 ± 1.1 | < 0.05
Alanine Aminotransferase (U/L) | 35.8 ± 4.1 | 26.8 ± 2.4 | < 0.01
Fasting C-peptide (ng/ml) | 3.22 ± 0.29 | 2.63 ± 0.17 | < 0.05

Values are mean ± standard deviation, BMI: Body Mass Index, %: includes combination agents counted in each category.

Safety
• Mild gastro-intestinal symptoms immediately post-procedure were the most commonly reported adverse event (AE), including abdominal pain, constipation, diarrhea, and dyspepsia.
• No device or procedure related serious AEs were reported.
• No unanticipated adverse device effects were reported.

Conclusion
• In this international, multi-center study, initial observations from the open-label cohort indicate that DMR was safely implemented in T2D subjects with a favorable safety and tolerability profile.
• Initial metabolic data also indicates that DMR exerts a favorable metabolic effect with an improvement in glycemic and other metabolic parameters.
• MR of the liver indicates that DMR exerts insulin sensitizing effects in T2D, resulting in lowering of fat in the liver bed.
• DMR offers significant potential for the treatment of metabolic disorders that target the substantial overlap between T2D and fatty liver disease.