Duodenal mucosal hydrothermal ablation: a new procedure designed for metabolic gain

David Maggs, MD Fractyl Laboratories, Inc. Lexington, MA USA dai@fractyl.com Fractyl Laboratories employee and shareholder

Global Pandemic of Metabolic Disease

- Insulin resistance is a key pathophysiological defect at the core of T2D, fatty liver disease and cardiovascular disease
- In 2040, 650M people around the globe will have T2D $(1 \text{ in } 10)^{(1)}$
- Currently, 40+ different pharmacological agents available for T2D in US yet 50% of diabetics remain poorly controlled through disease progression, pharmacological failure and/or treatment non-compliance⁽²⁾
- ➤ Fatty liver disease will soon be the main driver of end stage liver disease and need for organ transplant → with currently no available treatments for fatty liver disease
- Bariatric surgery has manifested a potent effect to improve dysmetabolic conditions and has uncovered a key metabolic role of the gastro-intestinal tract
- Yet bariatric surgery may not be a scalable solution to address populationlevel metabolic disease

Gastric Bypass Surgery Epiphany

Improved Glycemic Control Post RYGB

Clinical Benefits of RYGB

- Potent glycemic improvement in T2D⁽¹⁾
- Anti-diabetic effect is in part weight independent⁽²⁾
- Glycemic effect tied to background β
 cell function⁽³⁾
- Disease prevention of both T2D & NAFLD⁽⁴⁾
- Histologic resolution of NASH
- Return of ovulation in PCOS
- Reduced CV disease
- Improved patient satisfaction⁽⁵⁾

Bariatric surgery offering a window into the metabolic role of the GI tract

Sources: ⁽¹⁾ Mingrone et al. NEJM.366(17); ⁽²⁾ Pories et al. Ann Surg. 222(3): 339-50; 1995; ⁽³⁾ Nannipieri et al. JCEM. 96(9); ⁽⁴⁾ Carlsson et al. NEJM. 367(8); ⁽⁵⁾ Mingrone et al. Lancet 386 (9997), p964-973

Gastric Bypass Surgery Epiphany

Improved Glycemic Control Post RYGB

Mechanistic Explanation

- Early post-surgery hypocaloric effect
- Specific signaling from duodenum
- Hindgut incretin effect
- Bile acids
- Microbiome
- Shrinking Adipose-TG depot
- Malabsorptive contribution

Bariatric surgery offering a window into the metabolic role of the GI tract

Sources: ⁽¹⁾ Mingrone et al. NEJM.366(17); ⁽²⁾ Pories et al. Ann Surg. 222(3): 339-50; 1995; ⁽³⁾ Nannipieri et al. JCEM. 96(9); ⁽⁴⁾ Carlsson et al. NEJM. 367(8); ⁽⁵⁾ Mingrone et al. Lancet 386 (9997), p964-973

Metabolic Role of the Duodenum

⁽¹⁾ Dirksen et al. Diabetes Care. 2010;33(2):375-377; ⁽²⁾ Cummings DE et al. IFSO 2016; ⁽³⁾ Adachi et al Endocr J. 2003;50(3):271-279; ⁽⁴⁾ Bailey et al. Acta Endocrinol (Copenh). 1986;112(2):224-229; ⁽⁵⁾ Gniuli et al. Diabetologia. 2010;53(10):2233-2240

Duodenal Ablation: Early Proof of Concept

Glucose

signal 7

Duodenal Mucosal Resurfacing Procedure

- Duodenal Mucosal Resurfacing (DMR) is designed to rejuvenate the duodenal mucosal surface, replicating the duodenal exclusion of RYGB
- DMR conducted during upper GI endoscopy:
 - Utilizes techniques familiar to endoscopists
 - Single-use disposable catheter system
 - Same day, minimally invasive procedure conducted <1 hour
 - Software & integrated sensors designed to minimize operator and procedural error
- DMR hydrothermal ablation resurfaces a targeted post-papillary duodenum segment of ~10-12 cm

DMR: endoscopic view

Procedure:

- Duodenal mucosa lifted by saline to create thermal barrier protecting deeper tissues
- Circumferential ablation through thermal exchange (hot water)
- Follow up endoscopies and duodenal biopsies at 1mo and 3mo document mucosal healing

DMR Overall Safety and Tolerability

- Total ~100 cases in early FIH and ongoing multicenter study
 - Includes cases with new single catheter
- Post-procedure: patients adhere to 2 week eucaloric diet
 - − liquid \rightarrow puree \rightarrow semi-solid
- Post-procedure: favorable tolerability profile with minimal GI symptoms
- ➤ Three duodenal stenoses in early FIH experience → each successfully treated with single non-emergent balloon dilation and no later sequelae
- No device/procedure related SAEs in last ~65 cases after implementation of improved mucosal lift procedure
- No apparent hypoglycemic risk
- No evidence of malabsorption
- No late adverse events observed (50+ patients >12 months)

Legend FIH: first-in-human

First-in-Human Study: Patient Characteristics

- Open label, single-arm, single center feasibility study in Santiago, Chile
- Patient entry: A1C 7.5-12%, BMI 24-40, age 28-75, 1-2
 OAD (no insulin)
- 44 consecutive patients enrolled
 - 4 patients were not treated (1 duodenal anatomy, 2 failed screening endoscopy, 1 procedure duration)
 - 1 patient with anti-GAD Ab (exclusion criteria) treated and followed for safety alone

Rajagopalan, H et al., Diabetes Care, Aug 2016

PATIENTS ENROLLED	(N=44)			
Age, mean years +/- standard deviation ("SD")	53.3 +/- 7.5			
Male	28 (63.6%)			
BMI, mean kg/m2 +/- SD	30.9 +/- 3.5			
Systolic BP, mmHg +/- SD	122.1 +/- 14.4			
Duration T2D, mean years +/- SD	5.7 +/- 2.2			
HbA1c, % +/- SD	9.5 +/- 1.3			
FPG, mg/dL +/- SD	184 +/- 58			
Hepatic Steatosis on baseline ultrasound	11 (25%)			
Oral Anti-diabetic Rx				
Metformin, n	44 (100%)			
Sulfonylurea, n	20 (44%)			

Escalating Ablation Length

- Ablation length was increased from short segment DMR to long segment DMR as FIH trial progressed
- Patients blinded to ablation length and managed in identical fashion
- Fasting glucose improvements observed as early as 1 week post-procedure
- Statistically significant improvement in fasting glucose versus baseline of 64 mg/dl noted in LS DMR vs 26 mg/dl in SS DMR
- Net medication reductions in LS DMR cohort post-procedure

	Month 3	Month 6
Long segment (n=28)	-2.5 ± 0.2%	-1.4 ± 0.3%
Short segment (n=11)	-1.2 ± 0.5%	-0.7 ± 0.5%

DMR Effects on Meal Challenge Glycemia

Meal challenge plasma glucose (PG 0-120 min) in LS-DMR subjects (n = 28)

Legend LS-DMR: patients receiving long segment (~10cm) DMR ablation

.

DMR Lowered A1C (0-6 Month Data)

A1C change in LS-DMR subjects with higher (>10%) and lower (<10%) entry A1C A1C change in LS-DMR subjects with lower entry A1C (<10%) where background OAD was either stable or reduced

DMR Lowered Hepatic Transaminases

- Consistent lowering of hepatic transaminases (ALT and AST) in combined FIH and multi-center cohorts
- DMR is associated with a modest weight effect (2-3kg) in short term that returns to baseline by 6 months
- Graphs demonstrate change in AST and ALT by tertile starting levels

DMR Metabolomic Signature (0-3 Month Data)

- Meal challenge samples (0-3 months)
- Metabolomic analysis
- Improved glucose handling
- > Improved insulin sensitivity ($\downarrow \alpha HBA$)
- ↓TAGs, DAGs
- ↓FA β-oxidation
- Improved mitochondrial function (↓ dicarboxylic acids)
- ↓inflammation (↓HETE) marker of NAFLD→NASH
- ↓lipid peroxidation seen with insulin sensitizing
- ↑anti-oxidant capacity (↓ glutathione catabolism)
- Altered 2° bile acids (microbiomerelated?)

	Month 3 0min	Month 3 60min	Month 3 120min
Super Pathway	Screening 0min	Screening 60min	Screening 120min
Amino Acids			
Lipids			
Xenobiotics			
Complex Lipids			
Unnamed			

Conclusions

- Increasing evidence that the duodenum plays an important metabolic role
- Duodenal mucosal resurfacing (DMR) appears to exert an insulin sensitizing effect that impacts cardiometabolic indices
 - implications for T2D, fatty liver disease and other insulin resistant conditions
 - raising the potential for a <u>compliance-independent</u> approach to disease management
- Future study is necessary to understand
 - □ safety in larger numbers of users and patients
 - mechanism
 - efficacy and durability
 - clinical utility in the treatment of insulin resistant conditions

Metabolic Role of the Duodenum

⁽¹⁾ Dirksen et al. Diabetes Care. 2010;33(2):375-377; ⁽²⁾ Cummings DE et al. IFSO 2016; ⁽³⁾ Adachi et al Endocr J. 2003;50(3):271-279; ⁽⁴⁾ Bailey et al. Acta Endocrinol (Copenh). 1986;112(2):224-229; ⁽⁵⁾ Gniuli et al. Diabetologia. 2010;53(10):2233-2240

Microalbuminuria sampling from EU multi-center trial (Revita-1)

Gastric Bypass Surgery Epiphany

Improved Glycemic Control Post RYGB

Clinical Benefits of RYGB

- Superior glycemic effect (T2D)⁽¹⁾
- Weight independent anti-diabetic effect⁽²⁾
- Glycemic effect tied to background β
 cell function⁽³⁾
- Histologic resolution of NASH
- Prevent disease onset T2D/NAFLD⁽⁴⁾
- Return of ovulation in PCOS
- Reduced risk of CV disease
- Improved patient satisfaction⁽⁵⁾

Bariatric surgery offering a window into the metabolic role of the GI tract

Sources: ⁽¹⁾ Mingrone et al. NEJM.366(17); ⁽²⁾ Pories et al. Ann Surg. 222(3): 339-50; 1995; ⁽³⁾ Nannipieri et al. JCEM. 96(9); ⁽⁴⁾ Carlsson et al. NEJM. 367(8); ⁽⁵⁾ Mingrone et al. Lancet 386 (9997), p964-973

First-in-Human Trial

HbA1c Reductions

Stable vs. Reduced Medications

Patients whose medical regimen remained stable through the 6-month follow-up period demonstrated sustained & durable drops in HbA1c.

ALT in Subjects with Fatty Liver

Patients with fatty liver show significant reductions in ALT, a common marker liver inflammation, suggesting impact on NAFLD/NASH.

Glycemic Efficacy Greater with Long-Segment DMR

Effect of short segment (SS, white circles) and long segment (LS, black circles) DMR treatment on FPG plotted to 3 months (n = 39)*

FPG change from screening plotted to 3 months in individual subjects who received LS-DMR (n = 28)*

Rajagopalan, H et al., Diabetes Care, 2016; *Data are reported as mean ± SD, S = pre-procedure value.

Grand Unifying Theory (G.U.T.)

- Sugar in the duodenum appears to cause hypertrophy of mucosa
- Changes lead to excess lipolysis in adipocytes and gluconeogenesis in the liver (amplified "fasting" signal)
- In the absence of glucose utilization, this leads to a buildup of hepatic fuel intermediates and mitochondrial dysfunction
- Hepatic and systemic insulin resistance ensues
- Potentially reversible with duodenal resurfacing (akin to laser skin resurfacing)

Bariatric Surgery Provides Key Insight to Solution

⁽¹⁾ Dirksen et al. Diabetes Care. 2010;33(2):375-377; ⁽²⁾ Cummings DE et al. IFSO 2016; ⁽³⁾ Adachi et al Endocr J. 2003;50(3):271-279; ⁽⁴⁾ Bailey et al. Acta Endocrinol (Copenh). 1986;112(2):224-229; ⁽⁵⁾ Gniuli et al. Diabetologia. 2010;53(10):2233-2240

DMR State of Play

- DMR as a safe and scalable intervention
 - Well tolerated procedure with favorable safety/tolerability profile
- DMR as a compliance-independent approach to disease management
 - Can overcome real world limitations of complicated drug regimens, side effects, and compliance challenges
- DMR as an insulin sensitizing procedure
 - Disease modification addressing root cause of insulin resistance with broad metabolic improvements relevant to T2D, NAFLD/NASH, PCOS
- Future studies will be directed at demonstrating safety/efficacy, optimizing performance, and establishing clinical utility in broader populations

Duodenal Bypass a Key Component

Duodenal-Jejunal Bypass vs. Gastrojejunostomy

- Goto-Kakizaki rats each received one of several surgeries
- Glucose evaluated by glucose tolerance test
- Duodenal-jejunal bypass improves glucose control
- Numerous follow up studies elucidating insulin sensitization, improvement in liver fat, fibrosis post-DJB

Post RYGB: Re-exposing the Duodenum to Nutrients

Acute re-introduction of nutrients into the bypassed duodenum (Roux limb) via PG tube caused an immediate worsening of glycemia

Dirksen et al. Diabetes Care. 2010;33(2):375-377; Cummings DE et al.

Evidence that Duodenal Mucosa is Maladapted

Small bowel abnormal in obese and diabetic genetic rodent models and fat/hexose challenged rodents

- Duodenal and proximal jejenal hypertrophy⁽¹⁾
- Duodenal entero-endocrine (GIP secreting) cell hyperplasia⁽²⁾⁽³⁾

⁽¹⁾Adachi et al Endocr J. 2003;50(3):271-279; ⁽²⁾ Bailey et al. Acta Endocrinol (Copenh). 1986;112(2):224-229; ⁽³⁾ Gniuli et al. Diabetologia. 2010;53(10):2233-2240

Abnormal enteroendocrine populations in T2D subjects

Non-diabetic (n=36) and T2D (n=17) subjects underwent duodenal biopsy and metabolic characterization

Theodorakis et al. AJP Endocrinol Metab. 2006;290(3):E550-E559.

Rodent proof of concept

- Goko-Kakizaki diabetic rodents studied
- Denudation of duodenal mucosa conducted through mechanical abrasion
- 35%↓ of hyperglycemia post oral glucose gavage
- Glucose lowering not observed in sham study or in non-diabetic Wistar rodents

Rodent proof of concept

- Goko-Kakizaki diabetic rodents studied
- Denudation of duodenal mucosa conducted through mechanical abrasion
- 35%↓ of hyperglycemia post oral glucose gavage
- Glucose lowering not observed in sham study or in non-diabetic Wistar rodents

Clinical Roadmap to Date

First in Human Single center Open label "Procedure Definition"

Revita-1 Multicenter Open label "Patient Selection" Initial safety and feasibility for T2D

- Long segment DMR more effective (dose effect)
- Mechanistic basis of DMR as insulin sensitizing
- Diabetes Care Aug 2016, Video GIE ~ Sept 2016
- Reproducibility of outcomes across EU centers
- Medication management more controlled
- Used to refine patient entry criteria for RCTs
- Introduced next generation catheter

Revita-2 Multicenter Ph2b equiv. Sham RCT "Efficacy Demonstration"

- Beginning Q4 2016 in ~ 12 EU centers
- Aim: Test efficacy in sham-controlled conditions
- Aim: Elaborate on metabolic mechanisms
- Aim: NAFLD/NASH clinical endpoints (e.g. MRFF)